Impact Loading and Functional Tissue Engineering of Articular Cartilage by Roman M . Natoli

نویسنده

  • Roman M. Natoli
چکیده

Impact Loading and Functional Tissue Engineering of Articular Cartilage by Roman M. Natoli This thesis presents two advances for alleviating the problem of articular cartilage degeneration: mitigating degradative changes that follow mechanically induced injuries and growing functional neo-cartilage for diseased tissue replacement. Experiments demonstrate that cartilage subjected to a single, nonsurface disrupting 1.1 J (Low) impact experiences sufficient degeneration over 4 weeks to become functionally equivalent to tissue subjected to a single, surface disrupting 2.8 J (High) impact. By 24 hrs post High impact, cell death and sulfated glycosaminoglycan (sGAG) release increased, changes in gene expression distinguished injured from adjacent tissue, and compressive stiffness decreased. In contrast, Low impacted tissue did not show decreased compressive stiffness until 4 weeks, revealing that Low impacted tissue experiences a delayed biological response. Post-injury treatment with the polymer P188, growth factor IGF-I, or matrix metalloproteinase inhibitor doxycycline partially ameliorated cell death and sGAG loss, two detrimental changes that occurred following either Low or High impact. With 1 week of treatment after Low impact, P188 reduced cell death 75% and IGF-I decreased sGAG release 49%. Following High impact, doxycycline treatment reduced 1 and 2 week sGAG release by 30% and 38%, respectively. As a novel method for engineering functional replacement tissue to use in cases of established disease, the GAG degrading enzyme chondroitinase ABC (C-ABC) improved the tensile integrity of articular cartilage constructs grown with a scaffold-less approach. C-ABC application increased ultimate tensile strength and tensile stiffness, reaching values of 1.4 and 3.4 MPa, respectively. Moreover, construct collagen concentration was ~22% by wet weight. Though C-ABC temporarily depleted sGAG, by 6 weeks no significant differences in compressive stiffness remained. Furthermore, chondrocyte phenotype was maintained, as constructs contained collagen type II, but not collagen type I. Decorin decreased following C-ABC treatment, but recovered during subsequent culture. The known ability of decorin to control collagen fibrillogenesis suggests a putative mechanism for C-ABC's effects. Diseased articular cartilage heals poorly. For patients, the last resort is total joint replacement, though its associated morbidity and the limited lifespan of its results drive the need for alternate treatment strategies. Decreasing degradative changes post-injury and increasing functional properties of engineered cartilage are two significant improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of doxycycline on articular cartilage GAG release and mechanical properties following impact.

The effects of doxycycline were examined on articular cartilage glycosaminoglycan (GAG) release and biphasic mechanical properties following two levels of impact loading at 1 and 2 weeks post-injury. Further, treatment for two continuous weeks was compared to treatment for only the 1st week of a 2-week culture period. Following impact at two levels, articular cartilage explants were cultured fo...

متن کامل

Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage.

Collagen content and tensile properties of engineered articular cartilage have remained inferior to glycosaminoglycan (GAG) content and compressive properties. Based on a cartilage explant study showing greater tensile properties after chondroitinase ABC (C-ABC) treatment, C-ABC as a strategy for cartilage tissue engineering was investigated. A scaffold-less approach was employed, wherein chond...

متن کامل

P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage.

Prior joint injury predisposes an individual to developing post-traumatic osteoarthritis, for which there is presently no disease modifying treatment. In this condition, articular cartilage degenerates due to cell death and matrix breakdown, resulting in tissue with diminished biomechanical function. P188, a nonionic surfactant, and the growth factor IGF-I have been shown to decrease cell death...

متن کامل

A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016